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Abstract
The Wigner time delay is a measure of the time spent by a particle inside the
scattering region of an open system. For chaotic systems, the statistics of the
individual delay times (whose average is the Wigner time delay) are thought to
be well described by random matrix theory. Here we present a semiclassical
derivation showing the validity of random matrix results. In order to simplify
the semiclassical treatment, we express the moments of the delay times in
terms of correlation functions of scattering matrices at different energies. In the
semiclassical approximation, the elements of the scattering matrix are given in
terms of the classical scattering trajectories, requiring one to study correlations
between sets of such trajectories. We describe the structure of correlated sets
of trajectories and formulate the rules for their evaluation to the leading order
in inverse channel number. This allows us to derive a polynomial equation
satisfied by the generating function of the moments. Along with showing the
agreement of our semiclassical results with the moments predicted by random
matrix theory, we infer that the scattering matrix is unitary to all orders in the
semiclassical approximation.

PACS numbers: 03.65.Sq, 05.45.Mt

1. Introduction

The dynamics of an open quantum system can be described by its scattering matrix. The
scattering matrix is defined as the linear operator which transforms an incoming wavefunction,
expanded in an asymptotic channel eigenmode basis, into the outgoing wavefunction.
Probability conservation forces the scattering matrix to be unitary. As the scattering matrix
describes the system, it can be used to investigate the desired physical properties of the system.

A quantity of particular interest is the Wigner time delay [1, 2] which was first derived
for the one-channel case from a Hermitian operator based on the scattering amplitude. The
time delay is, as the name suggests, a measure of the extra time a particle spends inside the
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scattering region as a result of being scattered (for some details see [3] for example), and was
later generalized to multi-channel scattering matrices [4]. With M scattering channels, the
Hermitian operator admits M eigenvalues which are the individual delay times of the system,
and the Wigner time delay is simply the average of these values.

For classically chaotic systems with a small opening, the probability for particles to remain
inside the system decays exponentially with a typical time scale depending on the size of the
opening. The exponential decay can be seen as a natural consequence of the ergodicity of
the classical motion as (for reasonable times) the particle is equally likely to hit any part of the
boundary of the system leading to a roughly constant small probability to leave through the
opening each time it hits. The continuous limit of this process is the exponential decay, and
the time scale associated with the decay is, for chaotic systems, exactly the average time delay
[5] of the corresponding quantum system. Staying with the classical version for now, if we
spread particles evenly over the available space and evolve them over time they will condense
onto a typically fractal pattern arranged around the zero-measure set of trapped periodic orbits
that never leave the system. From this set, and following their stable manifolds very closely
we can construct trajectories that start outside the system, approach trapped orbits and remain
inside the system for arbitrarily long times before eventually escaping following the unstable
manifolds. In fact, it turns out that these trajectories, or rather correlations between them, are
responsible in the semiclassical limit for recreating the oscillating part of the time delay [6],
which is given exactly in terms of the trapped periodic orbits [7, 8].

As the oscillating part of the time delay is given in terms of periodic orbits in the
semiclassical limit (of h̄ → 0), correlations between periodic orbits must then be responsible
for the typical fluctuations of the Wigner time delay. In particular, the form factor of the
time delay can be written in terms of pairs of periodic orbits and the types of correlations that
contribute were first treated for the spectral form factor for closed systems, where Gutzwiller’s
trace formula [9, 10] likewise provides a sum over pairs of orbits. The semiclassical treatment
of this sum started with the diagonal approximation [11] of pairing orbits with themselves
(or their time reversal) and used the sum rule of [12] to find the semiclassical contribution.
This was followed more recently by the treatment of correlated pairs of orbits which are
almost identical everywhere, but which differ in a very small region called an encounter
where the orbits behave differently and end up reconnecting inside the encounter [13]. All
the possible types of orbits with encounters were then generated and treated [14, 15], and
this treatment was applied to the time delay to obtain a semiclassical expansion for its form
factor [16].

The expansion for the form factor of the Wigner time delay was shown to agree with the
result from random matrix theory (RMT), in line with the idea that most properties of quantum
chaotic systems are well described by the results of RMT. But RMT can tell us a lot more
about the expected typical behaviour of the individual delay times, and in particular that their
distribution should have a compact support [17] in the limit where the opening supports a large
number of channels. Of course the classical decay gives no upper bound on the distribution
of the delay times, and so (if we expect to recover RMT results) quantum interference as
expressed through semiclassical correlations between classical trajectories should somehow
contrive to limit the maximum delay time.

Our aim in this paper is to identify the sort of correlations that contribute in the
semiclassical limit and to describe how they lead to the RMT result. We start with an
introduction to the time delay in section 2. To study the distribution of the delay times
we evaluate their moments which can be expressed in terms of correlation functions of the
scattering matrix. This approach simplifies the semiclassical treatment compared to the direct
evaluation of the time delay matrix.
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In section 2.2, we briefly review the RMT results before applying the semiclassical
approximation to the scattering matrix elements to obtain expressions in terms of scattering
trajectories. For the low order moments, which we treat in section 3, we build on the work of
the semiclassical treatment of the conductance [18, 19] and its second moment [20, 21]. To
treat all the moments, we delve into the combinatorial relations that first arose in the treatment
of the moments of the transmission amplitudes [22]. This work is extended in section 4,
where we find an implicit expression for the generating function of the moments and show
complete agreement with the RMT distribution of delay times. Considering a simpler case
in the appendix, we briefly derive the correlation functions which recently appeared in the
semiclassical treatment of the density of states of Andreev billiards [23].

2. The time delay matrix

If we consider a chaotic cavity with one or more open leads that carry M scattering channels,
the scattering dynamics is encoded in the M × M unitary scattering matrix S(E) which
relates the incoming and outgoing waves. We are interested in the Wigner time delay, which
represents the extra time spent in the scattering process compared to free motion, and which
can be found using the Wigner–Smith matrix [1, 2, 4]

Q = h̄

i
S†(E)

dS(E)

dE
. (1)

Differentiating the unitarity condition, S†(E)S(E) = I , with respect to E, we see that

S†(E)
dS(E)

dE
= −dS†(E)

dE
S(E), (2)

and that the matrix Q is Hermitian with real eigenvalues. The M eigenvalues are the individual
delay times of the system, and the average value of these times is the Wigner time delay:

τW(E) = 1

M
Tr[Q]. (3)

The moments of the eigenvalues are given by

mn = 1

M
Tr[Qn], (4)

and can be used to recover the complete distribution of the eigenvalues of Q.
We can also obtain the Wigner time delay from a correlation function of the scattering

matrix

C(ε) = 1

M
Tr

[
S†

(
E − εh̄μ

2

)
S

(
E +

εh̄μ

2

)]
, (5)

where it is convenient to specify the energy difference in units of h̄μ, where μ is the classical
escape rate of the system. This correlation function provides a symmetrized version of the
time delay [24]:

τW = 1

iμ

d

dε
C(ε)

∣∣∣∣
ε=0

= h̄

2iM
Tr

[
S†(E)

dS(E)

dE
− dS†(E)

dE
S(E)

]
, (6)

which agrees with the definition in (3) because of the unitarity of the scattering matrix as
expressed through (2).

As well as giving us the first moment of the delay times (the Wigner time delay), this
correlation function can also provide us with the second. Differentiating (2) again we obtain

S†(E)
d2S(E)

dE2
+

d2S†(E)

dE2
S(E) = −2

dS†(E)

dE

dS(E)

dE
, (7)

3
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which can be used to simplify the second derivative of C(ε) to

d2

dε2
C(ε)

∣∣∣∣
ε=0

= −h̄2μ2

M
Tr

[
dS†(E)

dE

dS(E)

dE

]
. (8)

Inserting the identity matrix into the form S(E)S†(E), we obtain

d2

dε2
C(ε)

∣∣∣∣
ε=0

= (iμ)2

M
Tr[Q†Q] = (iμ)2m2, (9)

and the second moment of the delay times.

2.1. Various approaches to higher moments

Differentiating the correlation function C(ε) further cannot produce higher moments since
the nth moment involves the first derivative of S(E) appearing n times while the definition
of C(ε), see (5), involves only two matrices. One way to resolve this difficulty is to define a
higher correlation function:

C(ε, n) = 1

M
Tr

⎡
⎣ n∏

j=1

S†
(

E − εjh̄μ

2

)
S

(
E +

εjh̄μ

2

)⎤
⎦ , (10)

where ε = (ε1, . . . , εn) is the vector of energy differences. From the nth correlation function,
we can obtain all the moments up to the (2n)th by differentiating. The formulae, which are
different for odd and even moments, are

m2k−1 = 1

(iμ)(2k−1)

⎛
⎝k−1∏

j=1

d2

dε2
j

⎞
⎠ d

dεk

C(ε, n)

∣∣∣∣
ε=0

, (11)

m2k = 1

(iμ)2k

⎛
⎝ k∏

j=1

d2

dε2
j

⎞
⎠C(ε, n)

∣∣∣∣
ε=0

. (12)

Though this provides an efficient way to calculate the lower order moments, the different
energy arguments complicate the semiclassical treatment. On the other hand, setting all energy
arguments to ε and differentiating n times leads to appearance of additional unwanted terms.
To deal with such terms, we define the correlation function

D(ε, n) = 1

M
Tr

[
S†

(
E − εh̄μ

2

)
S

(
E +

εh̄μ

2

)
− I

]n

. (13)

Because of the relation
1

n!

dn

dεn
[f (ε) − f (0)]n|ε=0 = [f ′(0)]n, (14)

we can see that the moments of the time delay matrix are now given directly by

mn = 1

(iμ)nn!

dn

dεn
D(ε, n)

∣∣∣∣
ε=0

. (15)

Expanding the nth power in (13) we can also obtain the moments as

mn = 1

(iμ)nn!

dn

dεn

n∑
k=1

(−1)n−k

(
n

k

)
C(ε, k)

∣∣∣∣
ε=0

, (16)

4
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in terms of the correlation functions

C(ε, n) = 1

M
Tr

[
S†

(
E − εh̄μ

2

)
S

(
E +

εh̄μ

2

)]n

. (17)

The correlation functions C(ε, n) have applications outside the scope of this paper (see
[23]) and thus their semiclassical evaluation is a question of stand-alone interest. However,
we found that performing the summation in (16) is a difficult task. Thus from now on we
will work with D(ε, n) directly. However, the technique we develop for evaluating D(ε, n) is
suitable for the simpler function C(ε, n) as well. We exploit it by deriving an equation for the
generating function of C(ε, n) in the appendix.

Finally, we note that one can use the semiclassical approximation directly in the definition
of the Wigner–Smith matrix, equation (1). The approach we took, however, allows us to build
on previous semiclassical work performed in open systems, in particular on the average
conductance of a chaotic ballistic device and its moments [19–22]. We will obtain, as in
the case of the conductance and shot noise, simple diagrammatic rules for the semiclassical
contributions of correlated trajectories. But before approaching this task we will quickly
review the RMT results for the delay times.

2.2. Random matrix predictions

The random matrix result for the probability distribution of the delay times is [17]

ρ(τ) = 1

2πτ 2

√
(τ+ − τ) (τ − τ−), τ± = 3 ± √

8

μ
, (18)

from which we can calculate the moments

mn =
∫

τnρ(τ) dτ = 1

2π

∫ τ+

τ−
τn−2

√
(τ+ − τ) (τ − τ−) dτ. (19)

Substituting t + 3 = μτ this can be written more obviously in terms of the moments of the
semicircle distribution

mn = 2

μn

∫ R

−R

(t + 3)n−2 2
√

R2 − t2

πR2
dt, (20)

with R2 = 8. The odd moments of the semicircle distribution are 0, while the even moments
can be written as

m̃2n =
∫ R

−R

t2n 2
√

R2 − t2

πR2
dt =

(
R

2

)2n

cn = 2ncn, (21)

where cn are the Catalan numbers defined as

cn = 1

n + 1

(
2n

n

)
= (2n)!

(n + 1)!n!
. (22)

By expanding the term (t + 3)n−2 in (20) in powers of t, we can therefore express the moments
(beyond the first) by the following sums:

m2n+2 = 2

μ2n+2

n∑
k=0

(
2n

2k

)
32(n−k)2kck, (23)

m2n+3 = 2

μ2n+3

n∑
k=0

(
2n + 1

2k

)
3 · 32(n−k)2kck. (24)

5
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The sequence of integers obtained from combining the Catalan numbers as above, and hence
appearing in the moments, can then be shown [25] to be the so-called Schröder numbers
(Sloane’s A006318 or 2×A001003) [26]. More importantly for our purposes, the Schröder
numbers can be derived from a generating function [26] and so the moments of the delay times
can also be generated from

G(s) =
∑
n=1

μnsnmn = 1 − s − √
1 − 6s + s2

2
. (25)

3. Calculation of the low correlation functions

Since the matrix S(E) is unitary we can rewrite the correlation function D(ε, n) as

D(ε, n) = 1

M
Tr

[
S†

(
E − εh̄μ

2

)
S

(
E +

εh̄μ

2

)
− S†(E)S(E)

]n

(26)

= 1

M

∑
i1,...,in

(
S
†
−S+ − S†S

)
i1,i2

(
S
†
−S+ − S†S

)
i2,i3

· · · , (27)

where the summation in the second line is over choices of n incoming channels and the ±
subscripts represent the different energy arguments of the scattering matrices. To evaluate
D(ε, n) semiclassically, we will use the semiclassical approximation for the scattering matrix
elements, which is given in terms of open trajectories [18, 27, 28]:

Sba(E) ≈ 1√
TH

∑
ζ(a→b)

Aζ e
i
h̄
Sζ . (28)

The TH appearing in the prefactor is the Heisenberg time, and it is simply related to the
classical escape rate by μ = M/TH. In the sum which is over all classical trajectories ζ

that start in channel a and end in channel b (where the channels fix the absolute value of the
angles at which the trajectories enter and leave the cavity), Sζ is the action of the trajectory ζ

and Aζ its stability amplitude [28] including the phase due to the number of conjugate points
along the trajectory. As our starting point, we will substitute approximation (28) into (26),
expand the action up to first order in energy Sζ (E + δE) ≈ Sζ (E) + Tζ (E)δE, where Tζ is the
time the trajectory ζ spends inside the system, and ignore any change in the slowly varying
prefactor Aζ .

Below we perform this calculation for n = 1, 2 and 3 before formulating the general
counting rules and performing the evaluation of D(ε, n) for general n.

3.1. Calculating D(ε, 1)

After semiclassical approximation (28), the correlation function D(ε, 1) becomes

D(ε, 1) = 1

M

∑
i1

(
S
†
−S+ − S†S

)
i1,i1

≈ 1

MTH

∑
i1,o1

∑
ζ,ζ ′(i1→o1)

AζA
∗
ζ ′ e

i
h̄
(Sζ −Sζ ′ )(e

iεμ
2 (Tζ +Tζ ′ ) − 1

)
, (29)

which is a sum over trajectory pairs ζ, ζ ′ both of which start and end in the same channels
(i1 and o1, respectively), followed by a sum over all the possible channels. We note that the

6
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difference of actions Sζ − Sζ ′ is divided by h̄ � 1 and therefore the resulting phase oscillates
wildly unless the action difference is of order h̄. The semiclassical expansion is based on
identifying couples (or, more generally, families) of orbits that have small action differences.

To leading order in inverse channel number 1/M , the first correlation function can be
calculated as in [6] using the diagonal approximation [11]. This approximation restricts the
sum to trajectories ζ and ζ ′ that are identical

Ddiag(ε, 1) = 1

MTH

∑
i1,o1

∑
ζ(i1→o1)

|Aζ |2(eiεμTζ − 1). (30)

The sum in (30) can be performed by using a sum rule for open trajectories [18] which turns
it into an integral over the trajectory time T∑

ζ(i1→o1)

|Aζ |2 . . . ≈
∫ ∞

0
dT e−μT . . . . (31)

The exponential term in (31) represents the average probability that a trajectory remains in the
system for the time T, while the sum over channels, where we can pick both i1 and o1 from the
M possible channels, simply gives a factor of M2. The diagonal approximation thus gives

Ddiag(ε, 1) ≈ M

TH

∫ ∞

0
dT (e−μ(1−iε)T − e−μT ) (32)

= 1

1 − iε
− 1 = iε

1 − iε
, (33)

where we have used the fact that μ = M/TH to simplify. Substituting into (15) we obtain

τW = 1

μ
, (34)

which just states that the average delay time is the inverse of the classical escape rate as we
might expect.

3.2. Calculating D(ε, 2)

To obtain the next moment, we move to the correlation function D(ε, 2). For this we will need
to treat not only the diagonal pairs but also correlated trajectories that have encounters. The
calculation follows the calculation of the shot noise power [20] which was first performed to
leading order in inverse channel number for quantum graphs [29]. The semiclassical treatment
of the shot noise builds on work on the conductance [18, 19], which itself is built on the work
on spectral statistics [13–15].

First we slightly modify (27) to explicitly include an indication of the unitarity of S:

D(ε, 2) = 1

M

∑
i1,i2

(
S
†
−S+ − δi1,i2S

†S
)
i1,i2

(
S
†
−S+ − δi1,i2S

†S
)
i2,i1

. (35)

While the semiclassical approximation (28) preserves the unitarity of S, and thus the Kronecker
deltas are not necessary, their inclusion greatly facilitates the derivation.

We now write down the semiclassical expression for the correlation function D(ε, 2) in
terms of open trajectories

D(ε, 2) ≈ 1

MT 2
H

∑
i1,i2
o1,o2

∑
ζ(i1→o1)
ζ ′(i2→o1)

∑
ξ(i2→o2)
ξ ′(i1→o2)

AζA
∗
ζ ′AξA

∗
ξ ′ e

i
h̄
(Sζ −Sζ ′ +Sξ −Sξ ′ )

× (
e

iεμ
2 (Tζ +Tζ ′ ) − δi1,i2

)(
e

iεμ
2 (Tξ +Tξ ′ ) − δi1,i2

)
. (36)

7
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ξ′
ζ

ξ ζ′
t1

t2

t3

t4

tenc

Figure 1. An example of two trajectories with a single encounter and two partner trajectories.

For diagonal terms we can either pair ζ = ζ ′ and ξ = ξ ′, or ζ = ξ ′ and ξ = ζ ′. For the first
case, the start channels i1 and i2 must coincide thus triggering the Kronecker delta. For the
second case we have o1 = o2. Either case leads to a (leading order) channel factor of M3,
because the number of channels we can choose in the outer summation is 3. Putting these two
possibilities into (36) we can write the diagonal contribution as

Ddiag(ε, 2) = M2

T 2
H

∑
ζ,ξ

|Aζ |2|Aξ |2(eiεμTζ − 1)(eiεμTξ − 1) +
M2

T 2
H

∑
ζ,ξ

|Aζ |2|Aξ |2 eiεμTζ eiεμTξ .

(37)

Note that in the second case it can also happen that i1 = i2, but this case gives a lower
order channel factor of M2 and is therefore neglected. Using the open sum rule from (31), we
get

Ddiag(ε, 2) = (iε)2

(1 − iε)2 +
1

(1 − iε)2 . (38)

However, as we know from the calculation of the shot noise [29, 20], the diagonal terms are
not the only ones that contribute to leading order in inverse channel number. If the trajectories ζ

and ξ come very close to each other in an encounter, as in figure 1, then the partner trajectories
can cross over inside the encounter leading to a quadruplet of trajectories with a small action
difference. Such a quadruplet can then give a contribution in the semiclassical limit. While
such an encounter makes the contribution higher order in inverse channel number, the sum
over channels now contributes the factor of M4. As a result the quadruplet contributes at the
same order as the diagonal terms.

To calculate the contribution, we simply put the additional energy arguments into the
calculation of the shot noise power. The contribution can be separated into a product over the
links and the encounters [20] and written as

D(21)(ε, 2) = M3

T 2
H

∫ ∞

0
dt1 e−μ(1−iε)t1

∫ ∞

0
dt2 e−μ(1−iε)t2

∫ ∞

0
dt3 e−μ(1−iε)t3

∫ ∞

0
dt4 e−μ(1−iε)t4

×
∫

ds du
e−μ(1−2iε)tenc(s,u) e

i
h̄
su

	tenc(s, u)
, (39)

where (21) refers to the structure of the diagram: one encounter with two (unprimed)
trajectories meeting (a ‘2-encounter’). In the final integral, s and u are the separations along

8
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the stable and unstable manifolds of the two original stretches inside the encounter and 	 is
the volume of the available phase space, while tenc(s, u) is the duration of the encounter. An
important point is that although the encounter involves two trajectory stretches, as they are
close to each other they will either remain inside the system or escape together and their average
survival probability is given by the time of just a single stretch. The presence of the encounter
actually slightly enhances the survival probability of the whole trajectory quadruplet, and this
tiny classical effect has important semiclassical implications. Elsewhere in (39), the ti are the
durations of the link stretches as depicted in figure 1. Performing the integrals following [20],
we obtain the result

D(21)(ε, 2) = −(1 − 2iε)

(1 − iε)4
, (40)

The structure of the answer is very simple: each l-encounter contributes a factor of − (1 − ilε),
while each link stretch gives the factor (1 − iε)−1. These diagrammatic rules, which first arose
for the conductance [19], massively simplify calculating the semiclassical contributions and
are the reason why we consider correlation functions rather than the time delay directly.

We can combine the two leading order results from (38) and (40) to obtain the second
moment

m2 = 2

μ2
. (41)

In conclusion of this subsection, we mention that the configurations described as diagonal
contributions above can be obtained from the diagram in figure 1 by setting t1 = t3 = 0 for
the first case and t2 = t4 = 0 for the second. We will refer to this reduction as moving or
sliding an encounter into the lead. As we have seen above, moving an encounter into the input
lead can lead to a contribution that is different from the encounter in the output lead.

3.3. Calculating D(ε, 3)

Before we proceed to calculate D(ε, 3), we will briefly look at how we can form the diagrams
that contribute. As we have seen, the nth correlator is expressed as a sum over 2n trajectories:

D(ε, n) ≈ 1

MTH
n

∑
{ij ,oj }

∑
{ζj (ij →oj )}

{ζ ′
j (ij+1→oj )}

n∏
j=1

Aζj
A∗

ζ ′
j

e
i
h̄
(Sζj

−Sζ ′
j
)(

e
iεμ
2 (Tζj

+Tζ ′
j
) − δij ,ij+1

)
. (42)

Taking the trace of the product of matrices means that we identify in+1 = i1. Therefore the
trajectories complete a cycle, if we consider moving forward along the unprimed trajectories
and back along the primed ones. The resulting structure for n = 3 is shown in figure 2(a)
and, as we have also seen, in (42) we add the actions of the unprimed trajectories and subtract
the actions of the primed ones, so the resulting phase oscillates wildly unless the total action
difference is of the order of h̄.

To obtain such a small action difference, we can collapse all the trajectories onto each
other, as in figure 2(b), creating encounters of the type we saw in figure 1. It turns out that
to obtain all contributions from this type of direct collapse we need to cyclically permute the
labels of the trajectories, resulting in three copies of the diagram in figure 2(b). Alongside this
direct collapse we can imagine sliding the encounters together to create a single diagram with
a single 3-encounter, as shown in figure 2(c). Further possibilities then arise from sliding the
encounters into the leads, giving the remaining diagrams depicted in figure 2.

Before we write down the total contribution, we consider two instructive examples. First
we evaluate the contribution from the diagram in figure 2(e). We assume that the trajectories

9
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(a) (b)

(e) (g)

(h)

(d)

(c)

(f)

Figure 2. The original trajectory structure for D(ε, 3) in (a) can be collapsed down to (three
copies) of the structure in (b), which has two 2-encounters, to ensure a small action difference.
Sliding the encounters together creates the single 3-encounter in (c), while moving encounters into
the leads generates all the further possibilities. Trajectories ζj are indicated by solid lines and
trajectories ζ ′

j by dashed lines.

indicated by solid lines are numbered top to bottom as ζ1, ζ2 and ζ3. Then we have i1 = i2

since the first encounter is in the incoming lead. This activates one of the Kronecker deltas
in the expression for D(ε, 3) (see (42) or the similar expression in (35)). The terms due to
trajectories ζ2 and ζ3, which have a non-degenerate encounter, are the same as in (39), giving
in total

D
(22)
i1=i2

(ε, 3) = M4

T 3
H

∫ ∞

0
dTζ1 e−μTζ1 (eiεμTζ1 − 1)

∏
j=2,3

∏
p=1,2

∫ ∞

0
dT

p

ζj
e
−μ(1−iε)T p

ζj

×
∫

ds du
e−μ(1−2iε)tenc(s,u) e

i
h̄
su

	tenc(s, u)
, (43)

where T
p

ζ refers to the duration of pth part of trajectory ζ and the power of M came from the
five choices of the remaining channels. Evaluating the integrals, we get

D
(22)
i1=i2

(ε, 3) = −iε(1 − 2iε)

(1 − iε)5
. (44)

If on the other hand, we consider the contribution of the diagram in figure 2(g), we notice
that i1 = i2 = i3, thus activating three Kronecker deltas. The contribution of this diagram is
thus

D
(31)
i1=i2=i3

(ε, 3) = M3

T 3
H

3∏
j=1

∫ ∞

0
dTζj

e−μTζj

(
eiεμTζj − 1

) = (iε)3

(1 − iε)3
. (45)

Comparing the results in (38), (44) and (45), we can surmise that the power of iε that results
from sliding an encounter into the incoming lead is equal to the number of direct stretches
from the encounter to the outgoing lead, i.e. the stretches that do not participate in any other

10
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i1

i2o1

o3o2 i3

i4 o4 o5i5

a

b

c

Figure 3. An example of a (2231)-tree.

encounters. This observation can be mathematically verified by using the relationship between
diagrams and factorizations of the cyclic permutation [30].

To summarise, we can write down the contribution of each diagram by simply looking at
its links and encounters and assigning

• a factor of (1 − iε)−1 to each stretch,
• a factor of −(1 − ilε) to each non-degenerate l-encounter,
• a factor of (iε)s to each encounter happening in the incoming lead and having s direct

stretches to the outgoing lead,
• a factor of 1 to each encounter happening in the outgoing lead.

Altogether, the leading contribution to D(ε, 3) is thus

D(ε, 3) = 3

(
(1 − 2iε)2

(1 − iε)7
+

−(1 − 2iε)

(1 − iε)5
+

−iε(1 − 2iε)

(1 − iε)5
+

iε

(1 − iε)3

)

+
−(1 − 3iε)

(1 − iε)6
+

1

(1 − iε)3
+

(iε)3

(1 − iε)3
, (46)

where the factor of 3 counts the three different ways to label the diagram of figure 2(b) and
its descendants.

The third moment can thus be calculated to be

m3 = 6

μ3
, (47)

and we note that if we put in three different energy arguments in line with (10), we can use
the same diagrams to get the next three moments using (11) and (12) as

m4 = 22

μ4
, m5 = 90

μ5
, m6 = 394

μ6
. (48)

4. All moments

Now that we know the rules which govern the contributions of individual diagrams, we can
look at generating all the diagrams and their contributions recursively. To leading order in
inverse channel number, the contributing diagrams of the type 2v2 3v3 · · · are in a bijective
correspondence with rooted plane trees [22] that have vl vertices of degree 2l and all other
vertices of degree 1 (called ‘leaves’), see figure 3. We denote by V = v2 + v3 + · · · the
total number of vertices of degree higher than 1. These vertices correspond to encounters
in the diagram. The total number of leaves can easily be seen to be 2(L − V + 1), where

11
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i1

o3i3

o2i2o1

i1

o3

i3o2i2

o1

i1

i3o2

o1 i2

o3

i1

o2 o3o1 i3i2

Figure 4. The trees contributing to the third order correlation function D(ε, 3). The first three
trees correspond to relabellings of figure 2(b) and the last one to figure 2(c).

L = 2v2 + 3v3 + · · · . Starting from the root, the leaves are labelled i1, o1, i2, o2, . . . , in, on,
where n = L − V + 1 is the order of the correlation function D(ε, n). The i-labelled leaves
correspond to incoming trajectories starting in the lead and the o-labelled leaves correspond
to the outgoing trajectories exiting into the lead.

As we have seen, some encounters can touch the lead, but this can only happen if an
l-encounter has l vertices with labels i connected to it (i-touch) or l vertices with labels o
connected to it (o-touch). For example, in figure 3, the vertex a can i-touch, the vertex c can
o-touch and the vertex b can do neither.

When an encounter can touch the lead, the total answer we seek is the sum of the
contributions from when it does and when it does not do it. Equivalently, we can take the
multiplicative factor of an encounter to be the sum of all factors it can produce. To illustrate
this point, we revisit the calculation of D(ε, 3) and rewrite equation (46) in the form

D(ε, 3) = 3

(1 − iε)3

(−(1 − 2iε)

(1 − iε)2
+ 1

) (−(1 − 2iε)

(1 − iε)2
+ iε

)

+
1

(1 − iε)3

(−(1 − 3iε)

(1 − iε)3
+ 1 + (iε)3

)
. (49)

This is the sum of contributions of three (22)-trees and one (31)-tree, see figure 4. The
structure of a contribution is as follows: the prefactor is (1− iε)−n, where n is half the number
of leaves (the order of the correlation function). Then follow the factors corresponding to the
vertices of the diagram. Each vertex of degree 2l (corresponding to an l-encounter) gives a
multiplicative factor of

−(1 − ilε)

(1 − iε)l
, (50)

modified by an additional +1 if the vertex can o-touch and by +(iε)s if the vertex can i-touch,
where s is the number of o-leaves attached to the vertex. In the case when there is only one
vertex in the diagram, as in the (31)-tree in figure 4, it can both i-touch and o-touch but not at
the same time. To provide a further example, the overall contribution of the tree in figure 3 is

1

(1 − iε)5

(−(1 − 2iε)

(1 − iε)2
+ iε

)(−(1 − 3iε)

(1 − iε)3

) (−(1 − 2iε)

(1 − iε)2
+ 1

)
. (51)

To count all possible trees while keeping track of the structure of their vertices we introduce
the generating function F(	x, 	zo, σ, 	zi, τ ). The roles of the variables are as follows:

• the power of xl enumerates the number of non-degenerate l-encounters
• the power of zo,l enumerates the number of l-encounters that o-touch the lead
• the power of 1 + σ is the total number of i-labelled leaves adjacent to the encounters that

o-touch the lead

12
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Figure 5. A separation of a tree into the top vertex and subtrees. Note that in the middle subtrees
the roles of variables ( 	zo, σ ) and ( 	zi , τ ) are reversed.

• the power of zi,l enumerates the number of l-encounters that i-touch the lead
• the power of 1 + τ is the total number of o-labelled leaves adjacent to the encounters that

i-touch the lead.

For example, the tree in figure 3 gives rise to four contributions to the generating function,
corresponding to the four possibilities of the vertices a and c touching the lead or not

x2x3x2 + zi,2(1 + τ)x3x2 + x2x3zo,2(1 + σ) + zi,2(1 + τ)x3zo,2(1 + σ)

= (x2 + zi,2(1 + τ))x3(x2 + zo,2(1 + σ)). (52)

Our aim then is to set

xl = −(1 − ilε)

(1 − iε)l
, zo,l = zi,l = 1, σ = 0, τ = −1 + iε, (53)

in line with the semiclassical contributions described above, and finally include a change of
variables to provide the correct prefactor of (1 − iε)−n.

While the generating function F is our aim, we will first deal with an auxiliary function
f = f (	x, 	zo, σ, 	zi, τ ) which is defined exactly as F except for not allowing the top vertex to
i-touch the lead and not counting the root as a leaf when the top vertex o-touches the lead.
These restrictions on the function f makes it possible to find a recursive equation for it. The
value corresponding to an empty tree will be set to 1, i.e. f (0) = 1. The correlation function
calculated with the above restrictions will be denoted by D̃(ε, n).

To write a recursion for f we separate a tree into the top vertex of degree 2l and 2l − 1
subtrees, see figure 5. If the top vertex is non-degenerate, its contribution is xlf

lf̂ l−1, where
the function f̂ correspond to the even-numbered subtrees in which the positions of i’s and
o’s are reversed. Thus the roles of all the variables corresponding to leaves of one type are
switched, i.e. f̂ = f (	x, 	zi, τ, 	zo, σ ).

To account for the possibility of the top vertex touching the lead, we recall that from the
definition of f , it is only allowed to o-touch. In this case all odd-numbered subtrees must be
empty and the contribution of each even-numbered subtree is f̂ + τ . Note that if the subtree
is empty, the contribution evaluates to the correct value of f̂ (0) + τ = 1 + τ . Putting this
together, we have

f = 1 +
∞∑
l=2

[xlf
lf̂

l−1
+ zo,l(f̂ + τ)l−1], (54)

13
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and correspondingly

f̂ = 1 +
∞∑
l=2

[xlf̂
l
f l−1 + zi,l(f + σ)l−1]. (55)

To obtain the function F, we need to take into account the special role of the top vertex. It can
both i-touch and o-touch although not at the same time. Additionally, it is always adjacent
to an i-labelled leaf and thus always contributes to the power of 1 + τ . The final generating
function F satisfies

F = 1 + σ + τ +
∞∑
l=2

[xlf
lf̂

l−1
+ zo,l(f̂ + τ)l−1(1 + τ) + zi,l(f + σ)l]

= f + σ + τ +
∞∑
l=2

[τzo,l(f̂ + τ)l−1 + zi,l(f + σ)l]

=
∞∑
l=1

[τzo,l(f̂ + τ)l−1 + σzi,l(f + σ)l−1 + f zi,l(f + σ)l−1], (56)

where, to get to the last line we defined zo,1 = zi,1 = 1. We note that the value F(0) cannot be
defined from recursive considerations and needs to be chosen to provide the correct answer for
D(ε, 1), which turns out to be iε = 1 +σ +τ . Another important observation is that our choice
of the leaf i1 as the root (see figure 3 for example) is arbitrary. In particular an o-leaf could
be chosen and the answer for D(ε, n) should not depend on the choice. Thus the function F
should be symmetric with respect to swapping the variables zo with zi, τ with σ and f with
f̂ . This is not apparent from (56) but will be checked (and used!) at a later stage.

Now we can make the substitutions

xl = − 1 − ilε

(1 − iε)l
r̃ l−1, (57)

zo,l = zi,l = r̃ l−1, (58)

r̃ = r

(1 − iε)
, (59)

σ = 0, τ = −1 + iε. (60)

The substitutions give the contribution of each tree diagram as in (53), but we have included
the powers of r̃ to keep track of which order correlation function they contribute to. Indeed, the
power of r̃ corresponding to a 2v2 3v3 · · · tree would be v2(2 − 1) + v3(3 − 1) + · · · = L − V =
n − 1. Substitution (59) therefore gives a prefactor of (1 − iε)1−n and so to get the additional
factor of (1 − iε)−1 that we need for the correct prefactor, we introduce g = (1 − iε)−1f . The
function g is a generating function of the ‘restricted’ coefficients D̃(ε, n), i.e.

g =
∞∑

n=1

rn−1D̃(ε, n). (61)

Performing all the changes of variable, apart from (60) for now, from (54) we arrive at

g(1 − iε) = 1 −
∞∑
l=2

rl−1glĝl−1(1 − ilε) +
∞∑
l=2

rl−1

(
ĝ +

τ

(1 − iε)

)l−1

, (62)

and a similar equation for ĝ. The sums can be performed easily, especially when we notice
that the first two terms correspond to the l = 1 terms of the two sums, leading to

g

1 − rgĝ
= iεg

(1 − rgĝ)2
+

1

1 − rĝ − rτ
(1−iε)

. (63)
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Taking the numerator of the above equation, we arrive at

(1 − iε − rgĝ)

[
1 + rgτ

1 − iε
− g

]
+ (iε)2rgĝ = 0, (64)

and similarly for ĝ

(1 − iε − rgĝ)

[
1 + rĝσ

1 − iε
− ĝ

]
+ (iε)2rgĝ = 0. (65)

We have written the equations in a form that highlights the symmetric terms involving gĝ.
Taking the difference between (64) and (65), we obtain

g(1 − iε − rτ ) = ĝ(1 − iε − rσ ). (66)

This can now be substituted back into (64) or (65) to give an implicit equation for g or ĝ,
although we only state the result after the simplifying substitution from (60):[

g − 1

(1 − iε)

]
(1 + r) = rg2

(1 − iε)

[
g − 1

(1 − iε)
− ε2

(1 − iε)

]
. (67)

Putting all substitutions apart from (60) into (56), and defining G = r(1 − iε)−1F , we
obtain
G

r
= g

1 − rg − rσ
(1−iε)

+
σ

(1 − rg)(1 − iε) − rσ
+

τ

(1 − rĝ)(1 − iε) − rτ
. (68)

Though it is clear that the last two terms together are symmetric, this still needs to be checked
for the first term. We can rewrite it as

g

1 − rg − rσ
(1−iε)

= g(1 − iε)

1 − iε − rσ − rg(1 − iε)
= gĝ(1 − iε)

ĝ(1 − iε − rσ ) − rgĝ(1 − iε)
, (69)

so that we can see that the symmetry follows from (66).
Having verified the symmetry of the generating function G we can put in the symmetry-

breaking substitution (60), or rather the simpler and equivalent τ = 0 and σ = iε − 1. We
finally get the generating function of the required semiclassical correlation functions

G = r(g − 1)

1 − r(g − 1)
, G =

∑
n�1

rnD(ε, n). (70)

From (15), we can see that the nth moment is simply (iμ)−n times the coefficient of (εr)n

in the expansion of G. Setting a = iε to cancel the factors of i, we just need to extract the
coefficients of (ar)n from G. To do so we let y = r(g − 1) and obtain

G = y

1 − y
, y = G

1 + G
. (71)

Substituting g = 1 + y/r , r = s/a and setting a = 0 in equation (67), we get the equation

s − ys − y + 2y2 = 0, (72)

for y and, through relation (71), the equation

G2 + (s − 1)G + s = 0, (73)

for the generating function of the moments. Solving this, and taking the solution which gives
the correct value of G = 0 when r = 0, we get exactly the generating function (25) from
RMT. As the semiclassically calculated moments match the RMT ones to all orders, we then
recover the full distribution of the delay times (18) from [17].
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5. Conclusions and outlook

For open chaotic systems, we presented a semiclassical derivation of all moments of the
individual delay times, up to leading order in inverse channel number. The derivation
essentially relies on the twin properties of hyperbolicity and ergodicity of the chaotic dynamics:
the latter for the possible return to nearby points to create encounters and the former to allow
the reconnections inside those encounters. This leads to a result which is in agreement with the
RMT prediction for the delay time distribution, a semicircle type law. Notably this implies
an upper bound on the longest delay time. In the derivation we relied heavily on the
previous work on semiclassical expansions, in particular [19, 21], which contain an implicit
assumption of instant equilibration in the underlying classical dynamics. The influence of
slower equilibration can be explored by treating the effect of the Ehrenfest time on the
semiclassical contributions [23, 31]. When the Ehrenfest time becomes much larger than
the typical time trajectories spend inside the system, one recovers the classical exponential
distribution of delay times.

It is also interesting to explore the effect of moving from chaotic to mixed phase space
(with regular islands) on the distribution of the delay times and this upper bound. The
interference effects which lead to the current result rely on the chaotic dynamics and should
be suppressed if the chaotic part is reduced. However, additional effects such as periodic orbit
bifurcations [32] can also be fairly strong. The moments of the delay times and in particular
their upper bound could therefore be very sensitive measures to explore the dynamics inside
quantum dots, and possibly used to measure the relative weights of the chaotic and regular
parts of phase space.

By considering scattering matrix correlation functions, which were then treated
semiclassically, we were able to derive equations that implicitly define the generating functions
of the moments. It is worth noting here that such correlation functions are useful for
investigating other questions, such as the density of states of chaotic Andreev billiards.

Restricting our attention to the leading order in inverse channel number resulted in limiting
the contributing diagrams to trees only. This, in turn, allowed standard recursive tools to be
used. Looking beyond the leading order, the semiclassical diagrams have more complicated
structures so that such tools can no longer be directly applied. Thus, in our view, the remaining
challenge of obtaining a semiclassical expansion of all moments to all orders is a task of
significant technical difficulty. However, it is a task of particular interest, not only because the
subleading orders should be influenced by the symmetries of the system but also because the
effects of a finite number of channels are of much experimental relevance. A solution to this
problem would have to involve new combinatorial tools and we hope that a clear and general
algebraic structure will emerge as a result of research in this direction.

Acknowledgments

The authors would like to thank Cyril Petitjean, Misha Polianski and Daniel Waltner for useful
discussions and gratefully acknowledge the Alexander von Humboldt Foundation (JK) and
the National Science Foundation under grant no 0604859 (GB) for funding.

Appendix. Correlation coefficients C(ε, n)

Here we briefly outline the results for the correlation functions C(ε, n) defined in (17). As
these do not involve subtracting the identity matrix from each bracket (as we did in (13)) we
no longer need to change the contribution of certain diagonal pairs or subtract anything when
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the start channels coincide. We can therefore simply set both σ = τ = 0 in the treatment of
section 4 and generate C(ε, n) instead. This simplification means that g = ĝ because of (66),
so that g is now given implicitly by[

g − 1

(1 − iε)

]
= rg2

(1 − iε)

[
g − 1

(1 − iε)
− ε2

(1 − iε)

]
, (A.1)

where in fact the only difference is that the r on the left-hand side of (67) has disappeared. We
can generate the first few terms in the expansion g = ∑

rn−1gn as

g0 = 1

(1 − iε)
, g1 = −ε2

(1 − iε)4 , g2 = ε2
(
2ε2 − 1

)
(1 − iε)7 . (A.2)

Adding the contribution from the top node in F, we obtain the full generating function of
C(ε, n), which is given by

G(ε, r) = rg

1 − rg
= rg + r2g2 + · · · . (A.3)

The expansion G(ε, r) = ∑
rnC(ε, n) then leads to

C(ε, 1) = g0 = 1

(1 − iε)
, (A.4)

C(ε, 2) = [
g1 + g2

0

] = 1 − 2iε − 2ε2

(1 − iε)4 , (A.5)

C(ε, 3) = [
g2 + 2g1g0 + g3

0

] = 1 − 4iε − 9ε2 + 8iε3 + 5ε4

(1 − iε)7 , (A.6)

which are exactly the correlation functions we can obtain by considering the diagrams explicitly
as in section 3. Combining these results in line with expanding (13), we recover the first three
functions D(ε, n) calculated in section 3. We could also continue to generate terms to obtain
the moments via (16).

However, the function G(ε, r) contains more information than just the moments, for
example by setting ε = 0 we see that g = 1. Hence

G(0, r) = r

1 − r
= r + r2 + · · · , (A.7)

which shows that

Tr[S†(E)S(E)]n = M, (A.8)

and that the unitarity of the scattering matrix holds semiclassically for all powers n to leading
order in inverse channel number. As another example, this function G and the correlation
functions it generates appear in the density of states of chaotic Andreev billiards [23].
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